Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System
نویسندگان
چکیده
This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour.
منابع مشابه
Parameters Identification of an Experimental Vision-based Target Tracker Robot Using Genetic Algorithm
In this paper, the uncertain dynamic parameters of an experimental target tracker robot are identified through the application of genetic algorithm. The considered serial robot is a two-degree-of-freedom dynamic system with two revolute joints in which damping coefficients and inertia terms are uncertain. First, dynamic equations governing the robot system are extracted and then, simulated nume...
متن کاملParticle Swarm Optimization Based Parameter Identification Applied to a Target Tracker Robot with Flexible Joint
This paper focuses on parameter identification of a target tracker robot possessing flexible joints using particle swarm optimization (PSO) algorithm. Since, belt and pulley mechanisms are known as flexible joints in robotic systems, their elastic behavior affecting a tracker robot is investigated in this work. First, dynamic equations governing the robot behavior are extracted taking into acco...
متن کاملRobust tracking with motion estimation and local Kernel - based color modeling q
Visual tracking has been a challenging problem in computer vision over the decades. The applications of visual tracking are far-reaching, ranging from surveillance and monitoring to smart rooms. Mean-shift tracker, which gained attention recently, is known for tracking objects in a cluttered environment. In this work, we propose a new method to track objects by combining two well-known trackers...
متن کاملKernel Bandwidth Adaptive Target Tracking Algorithm Based on Mean - Shift
The kernel bandwidth of the classical Mean-Shift tracking algorithm is fixed, and it usually results in tracking failure when the target’s size changes. A kernel bandwidth adaptive Mean-Shift tracking algorithm is presented with frame difference method to solve the question in this paper. According to the targets’ size obtained from the inter-frame difference method, the bandwidth matrix of ker...
متن کاملKernel-Based Robust Tracking for Objects Undergoing Occlusion
Visual tracking has been a challenging problem in computer vision over the decades. The applications of Visual Tracking are far-reaching, ranging from surveillance and monitoring to smart rooms. Occlusion is one of the major challenges that needs to be handled in tracking. In this work, we propose a new method to track objects undergoing occlusion using both sum-of-squared differences (SSD) and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016